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ABSTRACT 

The Power Law Distribution of Agricultural Land Size 

by 

Lauren Chamberlain, Master of Science 

Utah State University, 2018 

Major Professor: Dr. Sherzod Akhundjanov 
Department: Applied Economics 

Power-law distributions explain a variety of natural and man-made processes 

spanning various disciplines including economics and finance. This paper demonstrates 

that the distribution of agricultural land size in the United States is best described by a 

power-law distribution. Maximum likelihood estimation is carried out using county-level 

data of over 3,000 observations gathered at five-year intervals by the USDA Census of 

Agriculture. Our analysis indicates that U.S. agricultural land size is heavy-tailed, that 

variance estimates generally do not converge, and that the top 5% of agricultural counties 

account for about 25% of agricultural land between 1997-2012. The goodness of fit of 

power-law distribution is evaluated using likelihood ratio tests and regression-based 

diagnostics. The power-law distribution of farm size has important implications for the 

design of more efficient regional and national agricultural policies as counties close to the 

mean account for little of the cumulative distribution of total agricultural land. 

 (31 pages) 
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PUBLIC ABSTRACT 

 
 

The Power Law Distribution of Agricultural Land 
 

Lauren Chamberlain 
 

 
This paper demonstrates that the distribution of county level agricultural land size 

in the United States is best described by a power-law distribution, a distribution that 

displays extremely heavy tails. This indicates that the majority of farmland exists in the 

upper tail. Our analysis indicates that the top 5% of agricultural counties account for 

about 25% of agricultural land between 1997-2012. The power-law distribution of farm 

size has important implications for the design of more efficient regional and national 

agricultural policies as counties close to the mean account for little of the cumulative 

distribution of total agricultural land.   This has consequences for more efficient 

management and government oversight as a disruption in one of the counties containing a 

large amount of farmland (due to natural disasters, for instance) could have nationwide 

consequences for agricultural production and prices. In particular, the policy makers and 

government agencies can monitor about 25% of total agricultural land by overseeing just 

5% of counties. 

.   
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I. Introduction 

Agricultural land size plays an important role in understanding U.S. agriculture 

productivity and wealth, yet it undergoes continuous shifts in distribution and utilization. 

First, the efficient use of capital and increasing use of production technologies in farming 

operations have caused a shift in the way the United States operates its agricultural land 

endowments.  This results in larger regions of agricultural land being more productive than 

their smaller counterparts, a result that holds even after accounting for land scarcity, soil, 

geography, agrarian structure, and varying forms of agriculture (Adamopoulos and 

Restuccia, 2014).  This has caused a polarization, making counties with larger areas of 

agricultural land more productive in terms of agricultural sales (MacDonald, Korbe, and 

Hoppe, 2013). 

Second, the distribution of physical agricultural land has shifted over time because 

of population growth and urban sprawl.  The total proportion of agricultural land in the 

United States has decreased from 44.7% total farmland in 1982 to 40.5% total farmland in 

2012 (USDA, 2012).  Many counties have very little agricultural land, and farm acreage 

varies significantly across U.S. counties.  In 2012, some counties had less than 200 acres 

of agricultural land, while others had over 4 million acres (USDA, 2012).  

The presence of very large agricultural land in certain counties, the very wide 

dispersion in farmland size, and the role of the agricultural sector in the U.S. economy 

make it crucial for policymakers to better understand farmland distribution for effective 

planning and policy design as well as efficient use of government subsidies and oversight.  

Despite the importance of quantitative analysis of the distribution of agricultural land area, 

there is little empirical work on this topic in the literature. In particular, previous studies 
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have examined the distribution of production and sales among farms (Macdonald, Hoppe, 

and Newton, 2018), the determinants of farm size distribution in country-level wealth 

(Adamopoulos and Restuccia, 2014), and the growth process of farm size, specifically 

whether or not the growth process of county level agricultural land size obeys the Gibrat’s 

law of proportionate effect (Mansfield, 1962; Shapiro, Bollman and Ehrensaft, 1987; Clark, 

Fulton, and Brown, 1992; Brenes Muñoz, Lakner and Brümmer, 2012).1  

 In this paper, we investigate the size distribution of U.S. county-level agricultural 

land for 1997, 2002, 2007 and 2012, and in each case find that agricultural land area is 

plausibly characterized by a power-law (Pareto) distribution, meaning the probability that 

a farm size is more than 𝑥𝑥  acres is proportional to 1/𝑥𝑥 . We rigorously examine the 

goodness of fit of the hypothesized Pareto distribution by employing new regression-based 

methods (Gabaix and Ibragimov, 2011), robust estimation of upper-tail power-law 

threshold (Clauset et al., 2009), and fitting alternative distributions. Our analysis provides 

evidence in favor of Pareto distribution, with estimates remaining robust across different 

periods, estimation methods, and diagnostic tests, and the distribution fitting the data as 

good or better than a series of alternative distributions. 

 The power-law distribution has been used to describe a variety of natural and man-

made phenomena.2 The omnipresence of power laws is derived partly because they are 

                                                 
1 Gibrat’s law of proportionate growth posits that the growth rate of a stochastic process does not 
depend on its size, but is proportionate to it (Gibrat, 1931). Further, Gibrat (1931) showed that the 
law of proportionate growth can generate the lognormal distribution for the size of the process. 
Later, Gabaix (1999) demonstrated that the proportionate growth process can also give rise to 
power law behavior at the upper tail of the process. 
2 Examples include firm size (Stanley et al., 1995; Axtell, 2001; Luttmer, 2007), city size (Gabaix, 
1999, Krugman, 1996; Ioannides and Overman, 2003; Luckstead and Devadoss, 2014;              
Devadoss et al., 2016), frequency of words (Zipf, 1949; Irmay, 1997), income and wealth (Pareto, 
1896; Champernowne, 1953; Wold and Whittle, 1957; Singh and Maddala, 1976; Klass et al., 2006; 
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preserved over an extensive array of mathematical transformations (Gabaix, 2009). Power 

law distributions are characterized by extreme kurtosis resulting in heavy (fat) tails, 

whereby the likelihood of an extreme (upper-tail) event occurring becomes more typical. 

Therefore, the robust Pareto fit to farmland indicates that U.S. agricultural land size is 

“heavy-tailed,” with a handful of counties accounting for the majority of farmland. 

 The main contribution of this study is that we show that U.S. agricultural land size 

is well described by a power-law distribution across different periods (with power-law 

exponent of approximately 2). This finding is significant for two reasons. First, it becomes 

inconsequential to talk about average county agricultural land size as this statistic is not 

representative of the majority of counties; the total farmland is essentially determined by 

the largest counties (Gabaix, 2009). Focusing on quantile analysis and order statistics 

instead would be more appropriate in this case. According to our data, the top 5% of U.S. 

agricultural counties accounted for 25.75% of all agricultural land in 1997, 25.73% in 2002, 

25.52% in 2007, and 25.42% in 2012. In contrast, the bottom 50% of counties only held 

15.42% of land in 1997, 15.17% in 2002, 14.86% in 2007, and 14.71% in 2012. This heavy 

share of land concentrated in the top echelons of agricultural counties indicates most of the 

data is far from the mean, and that observations close to the mean account for little of the 

cumulative distribution of total farmland. This has consequences for more efficient 

management and government oversight as a disruption in one of the counties containing a 

large amount of farmland (due to natural disasters, for instance) could have nationwide 

consequences for agricultural production and prices. In particular, the policy makers and 

                                                 
Toda, 2012), consumption (Toda and Walsh, 2015; Toda, 2017), carbon dioxide emissions 
(Akhundjanov, Devadoss, and Luckstead, 2017), and natural gas and oil production (Balthrop, 
2016), among others. See Gabaix (2009) for a review. 
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government agencies can monitor about 25% of total agricultural land by overseeing just 

5% of counties. 

 Second, on a more technical concern, “fat tails” of agricultural land size—as 

suggested by power-law distribution—have significance for empirical research. Statistical 

analysis based on thin-tailed distributions (such as the normal) might dismiss extremely 

large agricultural land sizes as an outlier or improbable observation. However, when the 

distribution is appropriately characterized (as one with large kurtosis), it is apparent that 

the majority of farmland exists in the upper tail, which need not be discounted in empirical 

analysis.  For example, when using ordinary least squares regression, all dependent 

variables are assumed to be normally distributed, an assumption also made when using 

maximum likelihood estimation and other methods. Because this research shows the power 

law is a fitting distribution for agricultural land size, it has implications that further research 

must make this consideration rather than assuming normality.  Admittedly, given the near 

infinite number of distributions to choose from, it is likely there is a distribution that 

provides better fit to the data than a power law distribution. However, the power-law 

distribution analyzed here is able to capture the main features of the data (heavy tails) 

parsimoniously. 

 The remainder of the paper is organized as follows. The next section describes the 

data used in the analysis. Section 3 describes the methodology, briefly discussing 

maximum likelihood, regression-based estimation methods, and goodness of fit tests. In 

Section 4 we present the results and analysis for the size distribution. Section 5 provides 

concluding remarks. 
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II. Data 

A considerable amount of data is required to identify a power-law-distributed 

process. This is because much of the power law behavior takes place in the tails of the 

distribution, where there are often the least number of observations. County-level 

agricultural land (in acres) data used in this study is obtained from the USDA Census of 

Agriculture (USDA, 1997, 2002, 2007, 2012). The National Agricultural Statistics Service 

(NASS) directs the census and obtains information from all U.S. farms. The census was 

obtained in inconsistent four, five, and ten-year intervals until 1982, after which constant 

five-year intervals began. The data used in this study is for 3,009 U.S. counties within 50 

U.S. states, for four time periods: 1997, 2002, 2007 and 2012. We choose four periods to 

demonstrate the robustness of power law analysis to time period under consideration. 

Table 1 provides summary statistics for our data set. Both the mean and median 

agricultural land size has decreased over time, with the former surpassing the latter in every 

year, indicating a heavy right tail. The sample estimates for skewness and kurtosis are large 

and positive, which suggests large weight in the tails of the distribution. This is also evident 

from the kurtosis of the kernel density of the data in Figure 1. It is apparent that the 

distribution is heavily left skewed with the upper tail of the distribution contributing to the 

majority of the data. 
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TABLE 1—SUMMARY STATISTICS 

 1997 2002 2007 2012 
Mean 308,874 303,463.4 298,412.1 295,848.1 
Median 197,781 193,386 186,999 186,154 
St. dev. 374,783.7 369,732.3 362,277.3 359,702.7 
Skewness 3.49 3.62 3.52 3.52 
Kurtosis 20.62 23.14 22.38 22.41 
Min 90 40 187 143 
Max 3,915,165 4,595,062 4,502,752 4,323,178 
95% Quantile 953,098.6 935,806.8 946,962.4 958,518.8 
Sample size 3,009 3,009 3,009 3,009 

Notes: Only counties with observed agricultural land size in each time period were included in the analysis. 
The agricultural land size is in acres. Source: USDA Census of Agriculture 1997, 2002, 2007, 2012. 
 

 

 

 
FIGURE 1. THE EMPICAL DISTRIBUTION OF U.S. COUNTY-LVEL AGRICULTURAL LAND SIZE. 

THE STYLE IS NAMED FIGURE TITLE 

Notes: The empirical distribution is obtained using kernel density with Epanechnikov kernel and the smoothing bandwidth based on 
unbiased cross-validation method. 
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III. Methodology 

The methodology is split into three parts. First, we describe maximum likelihood and 

regression-based techniques to obtain power-law parameter estimates. Second, we discuss 

goodness-of-fit tests used to verify power-law behavior in farmland distribution. Third, we 

provide additional robustness checks, comparing the power law distribution fit to 

alternative distributions, including lognormal and exponential distributions. 

3.1. Power Law Parameter Estimation 

The probability distribution function (PDF) of a power law is given by 

𝑓𝑓(𝑥𝑥) =
𝛼𝛼 − 1
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑥𝑥

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
�
−𝛼𝛼

 

where 𝑥𝑥 is an outcome of random variable (𝑋𝑋) of interest (e.g., agricultural acres), 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is 

the cutoff at which power law behavior takes hold, and 𝛼𝛼 is the power-law exponent (the 

parameter of interest). Notice that the moment generating function for the power law 

distribution takes the following form 

〈𝑥𝑥𝑘𝑘〉 = � 𝑥𝑥𝑘𝑘𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

=
𝛼𝛼 − 1

𝛼𝛼 − 1 − 𝑘𝑘
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘  

for 𝛼𝛼 > 𝑘𝑘 + 1. Thus, when 𝑘𝑘 < 𝛼𝛼 − 1, only the first ⌊𝛼𝛼 − 1⌋ moments of a power-law 

distribution exist. In Section 4, we show that 𝛼𝛼� ≤ 3  for agricultural land size across 

different periods, which implies that all the moments for 𝑥𝑥 beyond variance are infinite. 

Clearly, it is possible to compute higher-order moments (e.g., skewness, kurtosis) for any 

finite sample. However, these sample estimates will not converge to any particular value 

as the sample size increases. 
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  Given the observed sample (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚), the joint log likelihood function for power-

law distributed process is 

lnℒ(𝛼𝛼; 𝑥𝑥) = ��ln(𝛼𝛼 − 1) − ln 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛼𝛼 ln
𝑥𝑥𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑚𝑚

𝑚𝑚=1

= 𝑚𝑚 ln(𝛼𝛼 − 1) − 𝑚𝑚 ln 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛼𝛼� ln
𝑥𝑥𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚

𝑚𝑚=1

 

Taking first-order condition with respect to 𝛼𝛼 and solving the equation for 𝛼𝛼 yield the 

maximum likelihood estimate (MLE) of 

𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 = 1 + 𝑚𝑚 �∑ ln 𝑥𝑥𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚
𝑚𝑚=1 �

−1
                                                   (1) 

The associated standard error of  𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 is 

𝜎𝜎 =
𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 − 1

√𝑚𝑚
 

 In the literature, it is conventional to estimate the counter-cumulative parameter, 

given by 𝛾𝛾 = 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 − 1 , instead of equation (1). The estimator of 𝛾𝛾  is derived from 

equation (1), after making a small-sample adjustment, and is known as the Hill estimator: 

𝛾𝛾𝐻𝐻𝑚𝑚𝐻𝐻𝐻𝐻 =
𝑚𝑚 − 2

∑ (ln𝑥𝑥𝑚𝑚 − ln𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)𝑚𝑚−1
𝑚𝑚=1

 

The associated standard error of 𝛾𝛾𝐻𝐻𝑚𝑚𝐻𝐻𝐻𝐻 is 𝛾𝛾𝐻𝐻𝑚𝑚𝐻𝐻𝐻𝐻(𝑚𝑚− 3)−1/2. 

 The power-law exponent can similarly be obtained using regression-based 

techniques. In particular, the estimate of counter-cumulative parameter can be recovered 

through the following ordinary least squares (OLS) estimation: 

ln(𝑚𝑚) = 𝛽𝛽𝑂𝑂 − 𝛾𝛾𝑂𝑂𝑀𝑀𝑂𝑂 ln 𝑥𝑥𝑚𝑚 + 𝜀𝜀𝑚𝑚 
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where (𝑚𝑚) is the observation’s rank in the distribution, 𝛾𝛾𝑂𝑂𝑀𝑀𝑂𝑂 is the parameter of interest, and 

𝜀𝜀𝑚𝑚 is the error term. The associated standard error of 𝛾𝛾𝑂𝑂𝑀𝑀𝑂𝑂 is the asymptotic standard error 

of the form 𝛾𝛾𝑂𝑂𝑀𝑀𝑂𝑂(𝑚𝑚/2)−1/2. 

 Both MLE and OLS methods rely on the correct specification of an upper-tail 

threshold parameter 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚. In this regard, there are two approaches in the literature. First, 

Gabaix (2009) suggests setting 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 at the 95th quantile of the data. Clearly, this approach 

is somewhat arbitrary and there is certain level of uncertainty about whether 95th quantile 

captures the true starting point of power-law behavior. Related to this approach, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 has 

also traditionally been selected visually, whereby 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is chosen as the point where the 

PDF or cumulative distribution function (CDF) becomes roughly straight on a log-log plot 

(Clauset et al., 2009). Both of these methods are evidently subjective and can be sensitive 

to the noise or fluctuation in the distribution tail. If the arbitrarily selected 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is too small, 

the estimate of power-law exponent will be biased as it attempts to fit non-power law data 

to a power law model. If 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 exceeds the point where power law behavior begins, it results 

in discarding valuable data and causes the standard error to increase. Perline (2005) notes 

that sufficiently truncated Gumbel-type distributions (which include the lognormal) can 

generate a linear pattern on a log-log plot, thus mimicking the power law distribution. 

 The second, and preferred, approach is the data-driven procedure that removes the 

analyst from the selection process. This approach entails treating each data point as a 

potential candidate for 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , and choosing the optimal 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  that minimizes some loss 

function (e.g., the mean squared error (MSE) of the power-law exponent). Here, we adopt 

the approach proposed by Clauset et al. (2009), where the best 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  is obtained by 
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minimizing the Kolmogorov-Smirnov (KS) goodness-of-fit statistic. The KS statistic is 

specified as follows 

𝐾𝐾𝑂𝑂 = max
𝑥𝑥≥𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

�𝑀𝑀(𝑥𝑥) − 𝐹𝐹�(𝑥𝑥)� 

where 𝑀𝑀(𝑥𝑥) is the empirical CDF and 𝐹𝐹�(𝑥𝑥) is the estimated power law CDF. Hence, the 

KS statistic measures the discrepancy between the empirical CDF and the estimated power-

law CDF for the given candidate of 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 . The optimal 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  will thus minimize this 

distance, bringing the estimated distribution as close as possible to the empirical 

distribution. The algorithm is as follows: 

Step 1: Set 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥1; 

Step 2: Estimate power-law exponent (𝛾𝛾𝐻𝐻𝑚𝑚𝐻𝐻𝐻𝐻 and 𝛾𝛾𝑂𝑂𝑀𝑀𝑂𝑂) using 𝑥𝑥 ≥ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚; 

Step 3: Calculate the KS statistic; 

Step 4: Repeat steps 1-4 for all 𝑥𝑥𝑚𝑚 for 𝑚𝑚 = 1, … ,𝑚𝑚; 

Step 5: Choose 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 with the lowest KS statistic. 

3.2. Goodness of Fit 

Having significant parameter estimates alone does not provide sufficient evidence in favor 

of power-law fit to an empirical data. Additional goodness of fit tests and comparison with 

alternative distributions need to be carried out. Gabaix and Ibragimov (2011) suggest “rank 

– 1/2” test to verify the goodness of fit of power law model. First, define 𝑥𝑥∗ as 

𝑥𝑥∗ =
Cov �(ln𝑥𝑥𝑚𝑚)

2, ln𝑥𝑥𝑚𝑚�
2Var(ln𝑥𝑥𝑚𝑚)

 

Then, estimate the following regression with OLS 

ln �𝑚𝑚 −
1
2
� = 𝛼𝛼 + 𝜁𝜁 ln 𝑥𝑥𝑚𝑚 + 𝑞𝑞(ln 𝑥𝑥𝑚𝑚 − 𝑥𝑥∗)2 + 𝜖𝜖𝑚𝑚 
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The test statistic of interest is given by 𝑞𝑞
𝜁𝜁2

. The null hypothesis that agricultural land size is 

distributed according to a power law is rejected if 𝑞𝑞
𝜁𝜁2

> 1.95(2𝑚𝑚)−1/2. 

3.3. Further Robustness Tests 

Clauset et al. (2009) recommend comparing power law fit to the data with those of 

alternative heavy-tailed distributions, specifically the lognormal and exponential 

distributions. We adopt this here. The alternative distributions are fit to the upper tail 

data—similar to power law distribution—where 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  is obtained using the KS method 

discussed in the previous section. Using the fitted distributions, a log-log plot of the data 

can be constructed to visually evaluate the relative fit of competing distributions.3 

 The relative fit of alternative distributions can be compared more rigorously using 

the likelihood ratio test suggested by Clauset et al. (2009). The likelihood ratio statistic is 

given by  

ℛ = ��ln𝑓𝑓1(𝑥𝑥𝑚𝑚) − ln 𝑓𝑓2(𝑥𝑥𝑚𝑚)�
𝑚𝑚

𝑚𝑚=1

 

where 𝑓𝑓1(𝑥𝑥𝑚𝑚)  and 𝑓𝑓2(𝑥𝑥𝑚𝑚) are the probabilities for 𝑥𝑥𝑚𝑚 , 𝑚𝑚 = 1, … ,𝑚𝑚 , predicted by two 

competing distributions that are estimated via MLE. In our case, 𝑓𝑓1(𝑥𝑥𝑚𝑚) represents the 

power-law likelihood of 𝑥𝑥𝑚𝑚  while 𝑓𝑓2(𝑥𝑥𝑚𝑚)  represents the likelihood provided by an 

alternative distribution. The above statistic thus allows for a comparison of the power law 

                                                 
3 The log-log plot is constructed by taking the logarithm of the rank of 𝑥𝑥  in the data and the 
logarithm of 𝑥𝑥 , and then plotting log rank of 𝑥𝑥  against log 𝑥𝑥 . Note that the counter- 
(complimentary-) CDF (also known as survival function) for power law distribution is 
Prob(𝑋𝑋 > 𝑥𝑥) = 𝑘𝑘/𝑥𝑥𝛾𝛾, where 𝑘𝑘 is a constant. Now, taking the log of both sides of the counter-CDF 
of power law produces a linear relationship between log counter-cumulative probability and log 
data (i.e., ln𝑥𝑥), with the power-law parameter 𝛾𝛾 being the slope of the line. 
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distribution to the lognormal and exponential distributions. A positive value of the 

likelihood ratio statistic indicates the power-law distribution is the favored fit as it is more 

likely. In contrast, a negative value indicates the alternative distribution fits the data more 

closely. See Clauset et al. (2009) for asymptotic properties of and methods to obtain p-

values for ℛ. 
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IV. Results 

We implement maximum likelihood and regression-based techniques described in Section 

3.1 to fit power law distribution to our data. We first determine the upper-tail threshold 

point 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 using a robust KS method, so that the selected 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 achieves the minimization 

of the KS goodness-of-fit statistic, and then fit power law distribution to the resulting 

upper-tail data (i.e., 𝑥𝑥 ≥ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚). Estimation results are reported in Table 2. 

 The estimates of 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 lie far to the left of the 95th percentiles (from Table 1) for the 

corresponding periods, which indicates that power law behavior takes hold earlier than the 

95th percentile. Thus, setting 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 arbitrarily at the 95th percentile would entail a loss of 

valuable data, inflating standard errors. As noted before, identification of a power-law-

distributed process is data intensive. In particular, Clauset et al. (2009) recommend the 

sample size to be at least 50 observations for accurate power law analysis. From Table 2, 

it is clear that this requirement is far surpassed for all years in our case, with the upper-tail 

sample size ranging from 587 to 656 observations. 

It is apparent that both the Hill and OLS estimates of the power law parameter 𝛾𝛾 

are statistically significant for all years, with a slight difference between the two sets of 

estimates. The Hill estimates for county-level agricultural land size indicate that the top 

5% of counties accounted for 24.54% of agricultural land in 1997, 23.31% in 2002, 22.82% 

in 2007, and 23.22% in 2012.4  These parametric estimates are very close to empirical 

estimates obtained from the raw data,5 which speaks about the model fit to the  

 

                                                 
4  To identify fraction 𝑀𝑀  of the total land held by the top fraction 𝑃𝑃  of counties, use 𝑀𝑀 =
𝑃𝑃(𝛼𝛼−2)/(𝛼𝛼−1), which is derived from the complementary-CDF of power law distribution. 
5 According to the raw data, the top 5% of counties accounted for 25.75% of all agricultural land 
in 1997, 25.73% in 2002, 25.52% in 2007, and 25.42% in 2012. 
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TABLE 2—POWER LAW PARAMETER ESTIMATES, ESTIMATED 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 

 1997 2002 2007 2012 
     
𝛾𝛾𝐻𝐻𝑚𝑚𝐻𝐻𝐻𝐻 1.883 

 
 

1.946 
 

1.973 
 

1.951 
  (0.074) (0.081) (0.079) (0.077) 

𝛾𝛾𝑂𝑂𝑀𝑀𝑂𝑂 2.049 
 

2.097 
 

2.136 
 

2.147 
  (0.014) (0.015) (0.015) (0.014) 

Xmin 

 
424,121 449,671 440,462 426,329 

Observations 656 587 614 643 
     
Gabaix and Ibragimov (2011) test     
Goodness of fit test statistic -0.139 -0.139 -0.136 -0.130 
Goodness of fit threshold 0.054 0.057 0.056 0.054 

Notes: Estimation is based on upper-tail observations (𝑥𝑥 ≥ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚), where 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is determined based on the minimization of the 
KS statistic. Standard errors are in parentheses. For the Gabaix and Ibragimov (2011) test, the null hypothesis that agricultural 
land size is distributed according to a power law is rejected if test statistic > threshold. Clauset et al. (2009) recommend to 
have at least 50 observations for accurate power law analysis, a condition satisfied here 

. 
 

data. Further, the magnitude of the OLS estimates of 𝛾𝛾 implies that only the first two 

moments (mean and variance) of the power law distribution are finite, while the remaining 

moments are non-convergent. The magnitude of the Hill estimates, on the other hand, is 

just shy of 2, suggesting that only the first moment (mean) is finite.  

The results from the Gabaix and Ibragimov (2011) goodness-of-fit test indicate that 

we fail to reject the null hypothesis of power-law-distributed agricultural land size across 

different periods. This provides strong evidence in favor of Pareto distribution fit for U.S. 

agricultural land size. For completeness, we also perform the analysis for 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 set at 95th 

percentile. See Appendix for the estimation and diagnostic results. Despite a drop in the 

sample size, our main findings remain qualitatively unaffected even with this approach. 

Given that 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 set at 95th percentile is arbitrary (and that the optimal 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 that minimizes 

the KS-statistic lies to the left of the 95th percentiles), we continue focusing on the 

estimated 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 in the remaining analysis. In Figure 2, we compare the power law fit to the 

upper-tail agricultural land data with those of alternative distributions using log-log plots. 

As noted in Section 3.3, the log counter-cumulative probability of power law distribution 
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and log data produces a linear relationship, with the power-law parameter representing the 

slope of the line. Visually, power law distribution provides better overall fit to the data than 

competing distributions. In all periods the fitted power law is very accurate for observations 

located in the lower to mid quantiles of the upper tail, where the observed data forms a 

straight linear pattern, closely following the power-law fit. In the extreme upper-tail (after 

log land size of about 14.6), the tail of the Pareto distribution is heavy and decays more 

slowly, which results in overestimation of the frequency of the largest events  

 

 
FIGURE 2. PLOT OF EMPIRICAL AND FITTED LOG COUNTER-CUMULATIVE PROBABILITY AND LOG AGRICULTURAL SIZE 
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TABLE 3—LIKELIHOOD RATIO TESTS OF COMPETING DISTRIBUTIONS 

 1997 2002 2007 2012 
Power law vs exponential     
Likelihood ratio statistic 503.284 466.060 493.321 509.232 
P-value 0.000 0.000 0.000 0.000 
     
Power law vs lognormal Power law vs 

 
   

Likelihood ratio statistic -5.631 -16.137 -30.479 -42.397 
P-value 0.799 0.444 0.157 0.051 

Notes: Estimation is based on upper-tail observations (𝑥𝑥 ≥ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚), where 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is determined based on the minimization of 
the KS statistic. A positive value of the likelihood ratio statistic indicates that the power law is the better fitting distribution. 
A negative value indicates the alternative distribution fits the data more closely. P-values are calculated using the methods 
detailed in Clauset et al. (2009).. 
 

Note that there are other, more flexible forms of the Pareto distribution (e.g., the tapered 

Pareto) that behave similarly to the Pareto in the lower quantiles, but decay more quickly 

in the extreme upper tail than the Pareto distribution. These modified Pareto distributions 

have an extra parameter, which makes these distributions more flexible, and capture the 

Pareto distribution as a special case. The literature has demonstrated that where the Pareto 

distribution overestimates the frequency of the largest events (in the extreme upper-tail), 

these modified Pareto distributions follow the data more closely (Patel and Schoenberg, 

2011). Our main objective here is to show that the Pareto distribution generally provides a 

good approximation to agricultural land size, and not the exploration of different variations 

of the Pareto distribution. 

In contrast, exponential distribution clearly does not fit the data well, neither in the 

early to mid-range of the upper tail nor in the extreme upper-tail. While lognormal 

distribution tends to noticeably deviate from the data in the early and medium range, its 

performance somewhat improves in the extreme upper tail, rivaling that of the power law 

fit. 

In Table 3, we formally compare the power law distribution fit to the data with 

those of exponential and lognormal distributions using likelihood ratio tests. As noted in 
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Section 3.3, a positive value of the likelihood ratio statistic indicates that the power law 

distribution is the better fitting distribution, while a negative value implies that the 

alternative distribution fits the data more closely. It is evident that the power-law 

distribution provides significantly better fit than the exponential distribution for all years, 

with large positive likelihood ratio statistics. This finding corroborates our observations 

from Figure 2. With our comparison between power law and lognormal distributions, we 

do not find statistically significant difference between the two distributions for the time 

periods under consideration. The likelihood ratio statistics are negative but small, which 

proves to be insignificant at the standard significance levels. This further clarifies our 

observations from Figure 2, where we noted that power law distribution fits the data better 

than lognormal in the early and medium range of the upper-tail data, whereas the lognormal 

tends to capture the extreme upper tail more closely. For both power law and lognormal 

distributions, the goodness of fit in one part of the data seems to be offset by a lack of fit 

in another part. 

  

TABLE 3— LIKELIHOOD RATIO TESTS OF COMPETING DISTRIBUTIONS 

 1997 2002 2007 2012 

Power law vs exponential     

Likelihood ratio statistic 503.284 466.060 493.321 509.232 
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Taken together, given that (a) power law parameter estimates from both maximum-

likelihood and regression-based methods are statistically significant and robust, (b) power 

law fit passes goodness-of-fit tests, and (c) power law provides a fit that is at least as good 

as or better than a series of alternative distributions, this provides evidence that power law 

is the suitable fit for the U.S. agricultural land size. 
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5. Conclusions 

Agricultural land plays a key role in the economy of a country, and understanding the size 

distribution of agricultural land is fundamental to policy design. This paper presents 

evidence for a power law distribution for the upper tail of U.S. county-level agricultural 

land size. Our analyses demonstrate that the power law distribution passes extensive 

diagnostics tests, is robust across different periods, and fits the data at least as good as or 

better than a series of alternative distributions. This finding is significant because it implies 

that U.S. agricultural land size is heavy-tailed, that variance estimates generally do not 

converge, and that the top 5% of agricultural counties account for about 25% of agricultural 

land between 1997-2012. The power-law distributedness has implications for both more 

efficient management and agricultural policy design and empirical research. Understanding 

mechanisms that give rise to the emergence of such regularity for agricultural land size 

represents an avenue for further research. 
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A. Estimated Parameters Using 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎=95th percentile  

We apply the maximum likelihood and regression-based methods to the 5% upper-tail data 

for each year. That is, we set 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 at the 95th percentile of the data (Gabaix, 2009). Table 

A1 presents the main results. As can be seen, both the Hill and OLS estimates of the power 

law parameter remain statistically significant for all years. Now, the magnitude of the OLS 

estimates of 𝛾𝛾 for the first three years indicates that only the first two moments (mean and 

variance) of the power law distribution are finite, while the remaining moments are non-

convergent. Similarly, the magnitude of the Hill estimates suggests that only the first two 

moments are finite. Our results from the Gabaix and Ibragimov (2011) goodness-of-fit test 

suggest that we again fail to reject the null hypothesis of power-law-distributed agricultural 

land size for all years. This corroborates our main findings in the paper and provides further 

support for Pareto distribution fit for U.S. agricultural land size. 

 

 
TABLE A1— POWER LAW PARAMETER ESTIMATES, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 =95TH PERCENTILE 

 1997 2002 2007 2012 

𝛾𝛾𝐻𝐻𝑚𝑚𝐻𝐻𝐻𝐻 2.175 
 

2.183 
 

2.363 
 

2.516 
  (0.179) (0.179) (0.194) (0.207) 

𝛾𝛾𝑂𝑂𝑀𝑀𝑂𝑂 2.913 
 

2.894 
 

2.979 
 

3.003 
  (0.052) (0.047) (0.046) (0.037) 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 953,098.6 935,806.8 946,962.4 958,518.8 
Observations 151 151 151 151 
     
The Gabaix and Ibragimov (2011) test 

  
    

Goodness of fit test statistic -0.202 -0.173 -0.156 -0.134 
Goodness of fit threshold 0.112 0.112 0.112 0.112 

Notes: Estimation is based on 5% upper-tail observations (𝑥𝑥 ≥ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚=95th percentile). Standard errors are in parentheses. For 
the Gabaix and Ibragimov (2011) test, the null hypothesis that agricultural land size is distributed according to a power law 
is rejected if test statistic > threshold. Clauset et al. (2009) recommend to have at least 50 observations for accurate power 
law analysis, a condition satisfied here. 
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